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Introduction

My research interests are in geometric optimization and frustration, primarily dealing
with discrete packing density and configuration problems. This area has the distinction
of addressing nice problems combined with non-obvious, counter-intuitive, or nonexistent
solutions. Because of the general nature of these problems, I call upon many different
areas of mathematics: topology, soft and hard analysis, linear and non-linear programming,
combinatorial and algebraic methods, and various sub-disciplines of geometry. Using a broad
array of techniques, I have found the best known packing density bound for long cylinders
and the first sharp non-trivial packing density bounds in all dimensions greater than 3.
I have also shown that the conjectured densest configuration of regular pentagons in the
plane is a local optimum. I have shown with Yoav Kallus that this local result extends
to other polygons, and with Thomas Hales that it extends to a global result for regular
pentagons, both results are the first of their kind. The potential applications of this form
of optimal geometry are appealingly interdisciplinary. Notably, one encounters questions
about geometric optimization and frustration in chemistry, condensed matter physics and
materials science.

Motivation

The study of best configurations, where a best configuration is one that minimizes energy,
density or some other function, dates to antiquity. A modern motivation is found in Hilbert’s
18th, from Mathematische Probleme [10], regarding dense configurations:

I point out the following question, related to the preceding one, and important
to number theory and perhaps sometimes useful to physics and chemistry: How
can one arrange most densely in space an infinite number of equal solids of
given form, e. g., spheres with given radii or regular tetrahedra with given
edges (or in prescribed position), that is, how can one so fit them together
that the ratio of the filled to the unfilled space may be as great as possible?

Conway, Goodman-Strauss and Sloane [2] note that the definition of density in Hilbert’s
question is too malleable a notion to use in uniquely defining a best configuration, but is still
natural to consider. Even then, there is an implicit assumption in Hilbert’s question, that
the behavior of planar configurations with respect to density is well understood. This is not
the case.
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Packings and Density. The prototypical packing problem is that of maximizing the den-
sity of a collection of disjoint bodies in some ambient space. For example, a collection C
of congruent bodies in Euclidean n-space, with the density defined with respect to Bn(r):
expanding n-balls of radius r. This gives a modestly well-behaved notion of packing density:

δ+(C) = lim sup
r→∞

Vol(C ∩Bn(r))

Vol(Bn(r))
.

Then, for the particular body that constitutes a packing C , one considers the least upper
bound of density over all possible packings. In this way, we might gain some insight in to
large-scale behavior of large configurations of a particular body, as one might find in a crystal
or glass.

Figure 1. Region taken from a
maximal density cylinder pack-
ing. - Image produced in Math-
ematica 9.

Structure and Jamming. Any rigidity
to the structure of a best configuration is
also of interest. In two dimensions, some
cases of packings are well enough understood
that the choice of a good structure is fairly
straightforward. For example, L. Fejes Tóth
[4] showed that the maximal packing den-
sity of a convex centrally-symmetric body
is always attained by a lattice packing. In
three dimensions, things are much harder to
pin down. A. Bezdek and W. Kuperberg [1]
provided one the first sharp results for the
packing density of an object in R3, by show-
ing that a maximal density packing of D2 × R, the bi-infinite right circular cylinder, was
very ridged, forcing it to have packing density π/

√
12.

Results

Asymptotic Bounds for Finite Cylinders. In [8], I extend the previous result of A.
Bezdek and W. Kuperberg to the case of finite height cylinders.

Theorem 1 (K). The upper density δ+ of a packing C of R3 by cylinders of height t satisfies

δ+(C ) ≤ π√
12

+
10

t
.

This new result is one of very few non-trivial upper bounds for packings of bounded
domains in R3. It is of significance in that it gives bounds for a useful class of objects,
cylinders, which are already used for volume estimates in polygonal curves and hyperbolic
manifolds. Furthermore, it is the only known bound that is asymptoticly sharp, improving
a result of W. Kuperberg and G. Fejes Tóth [3].

The asymptotic result in Theorem 4 also yields some interesting corollaries. For example,

Theorem 2. (K). The upper density δ+ of half-infinite cylinders is exactly π/
√

12.

Theorem 3 (K). Given a packing C = {Ci}i∈I by non-congruent capped unit cylinders with
lengths constrained to be between 8

3
( 4√

3
+ 1)3 and some uniform upper bound M , the density
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satisfies the inequality

δ+(C ) ≤
t+ 4

3√
12
π

(t− 2t0) + (2t0) + 4
3

where t is the infimum of cylinder length.

Methods. Results for circular cylinders do not follow from planar results for circles, and the
finite height case is not a simple corollary to the infinite height case. To illustrate this, I ask
you to consider one of the primary objects of study, the Dirichlet-Voronoi decomposition of
a packing. This is a decomposition of the ambient space into cells, where each cell is the set
of points closer to a particular object than to any other. In the case of circles in the plane,
one may consider only the centers and find that it is exactly a Voronoi tessellation. The
cells are convex with polygonal boundaries. For bi-infinite cylinders, it is also possible to
consider the axes. Then, the cells are bounded by regions of hyperbolic paraboloids. Finally,
in the case of finite height cylinders, the cells become even more degenerate. It is no longer
possible to consider only the arrangement of axes, and the cells are bounded by even more
degenerate surfaces.

Figure 2. A slice of the
Dirichlet-Voronoi decomposi-
tion for a random packing by
bi-infinite cylinders. - Image
produced in Mathematica 9.

These problems are addressed using var-
ious approximation methods from geome-
try, combinatorics and hard analysis. The
pathological nature of the cells is resolved by
considering special two-dimensional slices,
the Dirichlet slices, and bounding their area.
Finite height cylinders can be approximated
by finite height cylinders with hemispheri-
cal caps, which again have cells equivalent
to the cells of their axis. Then the philoso-
phy is that the error between packings by
finite and bi-infinite cylinders occurs near
the ends of axes. The density bound the
becomes a problem of approximating an in-
tegral of slices over a discrete set of lines in
R3 yielding

Theorem 4. (K). Fix t ≥ t0 := 8
3
( 4√

3
+ 1)3.

The upper density δ+ of a packing C of R3 by capped cylinders of height t satisfies the
inequality

δ+(C ) ≤
t+ 4

3√
12
π

(t− 2t0) + (2t0) + 4
3

.

Sharp Bounds in High Dimensions. Using results in affine algebra, the result for bi-
infinite cylinders is also sufficient to prove higher dimensional packing density bounds for
poly-cylinders [9].

Theorem 5. (K). δ+(D2 × Rn) = δ+(D2) for all natural numbers n.

This appears to be the first non-trivial exact bound for higher dimensional objects.
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Methods. While the three-dimensional density results for cylinder packings do not follow
from the two-dimensional ones, in higher dimensions, transversality type results come into
play. Once the core of the poly-cylinder is middle-dimensional or higher, non-intersection
conditions force the cores to have a pairwise common parallel. This turns out to be sufficient
to apply cylinder packing results to poly-cylinders by careful consideration of how various
quotient operations behave with respect to the Voronoi-Dirichlet cells of the packing, allowing
the lower-dimensional density estimates to apply.

Global Optimality for Pentagons. In the early 2000s, there has been significant attention
focused on the other body explicitly mentioned in Hilbert’s 18th, the regular tetrahedron.
I suggest that packings of regular pentagons are a reasonable toy model for tetrahedra
packing, exhibiting some of the same issues of geometrical frustration. It seems that the first
reasonable upper bounds were produced in 2013, where pentagons serve as an archetype for
non-centrally-symmetric figures [11].

Work with Thomas Hales [5] proves that the best known lower bound for the density of
pentagon packings, shown in Figure 3, is in fact the global maximizer for density.

Theorem 6 (Hales, K). The maximum density of a packing of regular pentagons in the
plane is (5−

√
5)/3 = 0.902 . . . .

Local Optimality of the Double Lattice. I had previously proved that the then con-
jectured optimal configuration was locally optimal, in that it gives a local maximum of
density in the configuration space of four pentagons. This extends to packings with respect
to a particularly useful topology, one that considers local separation only, thus allowing for
stretching and rescaling. This is stated approximately as

Theorem 7 (K). There is a open set in the configuration space of four regular pentagons
in the plane, in which the maximum density with respect to its finite Delaunay triangles is
(5−

√
5)/3 = 0.902 . . . .

Figure 3. Pentagons
in a densest packing
arrangement.
- Image courtesy of
Toby Hudson (Wiki-
media Commons).

This result was extended in recent work with Yoav
Kallus [7] reformulating the local result to apply to a
general/generic convex polygon.

Theorem 8 (Kallus, K). There is a open set in the
configuration space of a generic polygon in the plane,
in which the maximum density with respect to its fi-
nite Delaunay triangles is given by the optimal double
lattice packing.

Numerical Results. Although the initial numerical re-
sults are superseded by the theorems of the previous
sections, I want to mention that this project started
by generating sufficient evidence that the conjectured
optimal configuration is a local maximum for density.
Starting with a Delaunay decomposition on four pen-
tagons, local density results appeared to match with
conjecture.

This was not the case for a three-pentagon config-
uration. In fact, the desired configuration is not crit-
ical, nor even near critical. There is a one-parameter
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family of configurations with maximally forced contact between pentagons which has an
interval of higher density than the conjectured global minimum.

This issue is removed by using local symmetry in a Delaunay decomposition on four
pentagons, but produces a constrained non-linear program in nine variables. Using the
geometric properties of the packing, it is possible to reduce locally to a more constrained
linear programming problem, but with some degeneracy. The numerical solution indicates
that the desired configuration is indeed a local maximum for density.

Interval Arithmetic. Further analysis of the constrained non-linear programming problem
show that it can be made to satisfy a number of special conditions based on a related conical
program’s geometric stability under perturbation.

Theorem 9 (K). A nonlinear program satisfying such conditions has an isolated local max-
imum at 0.

Furthermore, any numerical error from previous results can be overcome. The potentially
unstable parts of the program can be resolved geometrically, and the more stable parts can
be resolved using interval arithmetic.

Current Work

In addition to continuing work on projects related to the previous section, I have several
other areas of active research.

Computing Spherical Cap Discrepancy. Given a geometric sphere Sd with radius 1 and
normalized uniform measure σ and a spherical cap C embedded in Rd+1, the local spherical
cap discrepancy of a set XN of N distinct points in the d-sphere is given by

DC [XN ] := |[Vol(C)− 1

N
#|XN ∩ C|]|

and the spherical cap discrepancy is given as

D(XN) := sup
C

DC [XN ]

which describes the largest deviation of the point measure from the uniform measure with
respect to spherical caps.

I discovered that there is indeed a polynomial time algorithm to compute the discrepancy.
This turns out to be the spherical version Niederreiter’s algorithm for star discrepancy.
This may have been neglected, as Niederreiter’s algorithm is described as exponential and
it is know that the discrepancy problem is NP-Hard in that setting. However, the runtime
statements are with respect to dimension, and in the context of very high dimensional ap-
proximation, this is reasonable. In the context of spherical discrepancy, it is reasonable to
fix the dimension d = 2 and consider the runtime in n, the size of the point set. Then the
algorithm described is of order n4. At some cost in memory, it is possible to reduce the
runtime to order n3 log n.

By implementing this algorithm in work with Alden Walker, it is possible to compute
the discrepancy of point sets and generate a large experimental database. Proof of concept
tests give expected results in convergence, but the algorithm is still not implemented in an
efficient manner. For example, it could be massively parallelized.

It is also possible to use this algorithm to find a minimal discrepancy set of four points,
perhaps the first explicitly constructed non-trivial set of minimal discrepancy on the sphere.
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Critical Configurations. A configuration space of a collection of spheres in a container is
a subspace of the configuration space of the centers of those spheres. As the the radius of
the spheres changes, the topology and geometry of the configuration space changes. These
changes define critical points. For certain classes of potential functions there are explicit
characterizations of criticality, which equate criticality to the existence of a strut measure.
Such characterizations suggest that one can use a Morse-theoretic approach to describe
families of configuration spaces, building up the handlebody structure of such families as one
classifies the critical configurations. This process inspires the study of critical configurations
not only as special optimizers with respect to a fixed potential or class of potentials, but as
transition points for the geometry and topology of families of configuration spaces.

To determine which configurations are critical, we would like to develop and refine various
tools from combinatorial and computational optimization. Configurations need to be certified
as critical, and how they affect the structure of configuration space must also be described.
The criticality of a configuration might be characterized via balance or rigidity criteria.
Determining criticality in this manner involves generating and sorting combinatorial objects
such as contact graphs.

A major difficulty in the analysis of critical points comes from the inherent constraints.
As with any constrained optimization problem, there may be critical configurations that
arise from boundary conditions. In this context, analysis may become highly nontrivial as
the Morse index of a critical point interacts with the boundary. For example, criticality
may no longer be completely characterized by stationarity. When the packing radius of
a critical kissing configuration is varied, there may be linear variations that contribute to
the index but are associated with quadratic variations in the co-index. However, there are
computational approaches to certify a constrained configuration as critical and characterize it
from a parametrization of configuration space based on work developed in previous sections.

Figure 4. A cluster not discoverable
by existing algorithms. - Image pro-
duced in Mathematica 10.

Clusters of Sticky Spheres. Re-
cent work in materials science has led
to interest in the enumeration of clus-
ters of rigid sticky sphere clusters (e.g.
[6] ). These are essentially rigid bar
frameworks with an integrality condi-
tion on the edge lengths. For clusters
containing a small number of spheres,
there are algorithmic approaches to
generating and checking the allowed
configurations. I am currently using a
mechanical approach to construct ex-
amples of medium size clusters that
are poorly behaved with respect to the
rules used for current enumeration al-
gorithms. See Figure 4.

Hyperuniform Structures. Consider points (Xi)i generated by a point process on a space,
such that µn := 1

n

∑n
i=1 δXi

, the empirical measure, converges weakly to the uniform measure
on the space.
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Figure 5. Left: 10000 uniform random points. Right: 10000 determinantal
points. - Image produced in Mathematica 10.

For test sets B in this space, µn(B) is the random variable counting how many points
the process at time n has placed in B. Low variance of µn(B) suggests that there is extra
order in the point set. Torquato and Stillinger identified this extra order in the context of
thermodynamical ensembles in Euclidean space and called it hyperuniformity.

When we consider a process that places an increasing number of points in shrinking test
sets, heuristically, hyperuniformity in the compact setting should mean that the variance
Var [NR] is smaller than in the i.i.d. case. This becomes more precise in the following.

A point process on a manifold M with joint densities (ρ(n))n∈N is called determinantal
with kernel K(n), if

ρ(n)(x1, . . . , xn) = det(K(n)(xi, xj))
n
i,j=1 for all n ∈ N, xi ∈M.

In particular, there is a determinantal point process on S2 with density

ρ(n)(p1, . . . , pn) = const.
∏
i<j

‖pi − pj‖2R3 ,

with respect to the normalized Lebesgue measure σ on S2. Configurations where points are
close together have low probability according to this density. Processes with joint densities

ρ(n)(x1, . . . , xn) = const.
∏
i<j

‖xi − xj‖2

on compact M ⊆ Rd exhibit repulsion of points. It is apparent that such point sets are good
in that they are “uniformly distributed more uniformly” than random points. See Figure 5.

Future Work

From previous work completed, there are several natural extensions that seem worth men-
tioning in a more speculative setting.

Cylinders. Reduce the poly-cylinder and cylinder height requirements. In the case of poly-
cylinders, where the reduction is from an infinite core to a finite one, a method similar to
that used in previously-described work may be sufficient. In the case of cylinders, this would
be an attempt to resolve the difficult Wilker’s conjecture: that the packing density of a
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cylinder of arbitrary height has density at most π/
√

12. There are also several other more
tractable conjectures of a similar spirit in the literature.

Local-Global Transitions. Explore the large-scale behavior of packings. Even when deal-
ing with density, there are configurations which are locally denser than the configurations
with optimal global density. It is worthwhile to consider the behavior of large systems. This
emergence of phenomena from purely geometric or topological considerations can be seen in
several areas already mentioned: in the case of poly-cylinders, it is a geometrical frustration
from middle-dimensional linear manifolds; in the case of pentagons, the behavior emerges
from the incommensurability of the interior angle. This can be extended further by ask-
ing how small- and large-scale behaviors interact. Packing density is only one function: a
hard shell energy which is fairly local. Other functions used commonly correspond to other
energies with larger scale interactions, with the best configuration being the energy mini-
mizer. How the optimal configurations vary for different functions is of interest, especially
the transition where the small- and large-scale behaviors interact.

Interdisciplinary Work. Fabricate some of the special structures that appear in the liter-
ature. There are ellipsoids and elliptical cylinders, the structures of which have potential for
creating geometrically doped quasi-crystals. Various other known or conjectured critical do-
mains and configurations present attractive experimental opportunities. In the fabrication of
microstructures, the methods we use to analyze packings may prove fruitful in the construc-
tion of materials by taking advantage of the obstruction to, and emergence of, large-scale
properties and defects.

Construct various linkages related to critical configurations. Such configurations define
frameworks with some degrees of freedom. For example, the jitterbug framework that ap-
pears when considering configurations of 12 points on a sphere has 6 degrees of freedom in
space corresponding to the Euclidean group of motions. This means that there is a very
simple linkage that transforms 6 linear motions into rotations and translations.

Use high quality point sets for integration and motion planning to increase efficiency. Cur-
rently, one of the best ways to plan motion or to integrate is to randomly sample (Monte
Carlo) configuration space. Using sampling schemes coming from deterministic or determi-
nantal processes (Quasi-Monte Carlo) can reduce the time it takes to explore large portions
of configuration space.
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